From thiophene S-oxides to 7-thiabicyclo[2.2.1]hept-5-enes
Yuan-Qiang Lia, Carolin Thiemann ${ }^{\text {b }}$, Daisuke Ohira ${ }^{\text {a }}$, Shuntaro Mataka ${ }^{\text {b }}$, Masashi Tashiro ${ }^{\text {b }}$ and Thies Thiemann ${ }^{\text {a,b, },{ }^{*}}$
${ }^{\text {a }}$ Interdisciplinary Graduate School of Engineering Sciences and ${ }^{\text {b }}$ Institute of Materials Chemistry and Engineering, Kyushu University, 6-1, Kasuga-koh-en, Kasuga-shi 816-8580, Fukuoka-ken, Japan
 United Arab Emirates

Oligocycles with a 7-thiabicyclo[2.2.1]hept-5-ene unit have been prepared stereoselectively by cycloaddition of thiophene S-oxides to alkenes and subsequent deoxygenation of the sulfoxy bridge of the cycloadducts with PBr_{3}.

Keywords: thiophene S-oxides, cycloaddition, phosphorus tribromide, deoxygenation

Thiophene S-oxides such as $4 \mathbf{a - c}$, which can be prepared by oxidation of thiophenes with m-CPBA in the presence of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}^{1}$ or with $\mathrm{H}_{2} \mathrm{O}_{2}$ in the presence of a protic acid, ${ }^{2}$ are good dienes in cycloaddition reactions. ${ }^{3}$ With alkenes as dienophiles, they yield 7-thiabicyclo[2.2.1]hept-5-ene S-oxides ${ }^{3}$ (see also Scheme 2). These cycloadducts are good precursors to multifunctionalised arenes, ${ }^{4}$ to cyclohexadienes ${ }^{5}$ and in certain cases to diaryl disulfides. ${ }^{6}$ Previously, the authors have used this combination of reaction to construct such diverse molecules as crown ethers, ${ }^{7}$ cyclophanes ${ }^{8}$ and amino acids. ${ }^{9}$ We have reported one example of a transformation of a 7 -thiabicyclo[2.2.1]heptene S-oxide to a 7 -thiabicyclo[2.2.1] heptene. ${ }^{5}$ We now report that this deoxygenation of bridged sulfoxides to bridged sulfides is a general reaction.

Thiophene S-oxides 4 undergo facile cycloaddition to alkenes $\mathbf{3}, 5$, and $\mathbf{8}$ (Scheme 2). Thus, a solution in chloroform of 3,4-dibromo-2,5-thiophene S-oxide ($\mathbf{4 a}$), accessible from 3,4-dibromo-2,5-dimethylthiophene in one step, was heated with dibutyl maleate (5) to give cycloadduct 6 in good yield. Cycloadduct $\mathbf{6}$ is formed stereoselectively as the endo-product. Cycloadducts $9 \mathbf{a} / \mathbf{b}$ are also endo-products and are formed as one stereoisomer only, with the lone electron pair on sulfur being on the same side as the newly formed double bond of the cycloadducts. Compounds $\mathbf{9 a} / \mathbf{b}$ can also be formed in a one-pot oxidation-cycloaddition reaction of the corresponding thiophenes and N-phenylmaleimides $\mathbf{8 a} / \mathbf{b}$ by the action of meta chloroperoxybenzoic acid (m-CPBA) in the presence of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O} .{ }^{1,3}$ The yield of the cycloaddition of the isolated thiophene S-oxides $\mathbf{4 b} / \mathbf{c}$ and the thiophene S-oxides formed in situ in the one-pot procedure are comparable. Compound 7 is formed as the exo-endo product, with all nine stereocentres controlled over the course of two consecutive cycloaddition reactions. The first of these cycloadditions involves the synthesis of a dienophile 3,4-dibenzoyl-tricyclo[4.2.10 ${ }^{2,5}$] nona-3,7-diene (3) itself, which is achieved by reaction of quadricyclane (1) with dibenzoylacetylene (2) (Scheme 1), reminiscent of the reaction of quadricyclane with alkynes,
published previously. ${ }^{10}$ The stereochemical outcome of the reactions can be predicted from extensive work on single crystal X-ray analysis on cycloadducts of thiophene S-oxides and alkenes carried out by us and others., ${ }^{3,11-13}$

Reaction with PBr_{3} deoxygenates 7-thiabicyclo[2.2.1] heptene S-oxides $\mathbf{6}, \mathbf{7}$, and $\mathbf{9 a} / \mathbf{b}$ efficiently to 7 -thiabicyclo[2.2.1]heptenes 10, 11, and $\mathbf{1 2 a} / \mathbf{b}$, respectively. A temperature of $0^{\circ} \mathrm{C}$ must be maintained carefully during the addition of PBr_{3}. Temperatures higher than $25^{\circ} \mathrm{C}$ should also be avoided during the reaction itself. Elevated temperatures favour the extrusion of the entire SO-bridge and lead to mixtures of aromatic systems and cyclohexadienes.

In conclusion, we have shown that oligocycles with a 7-thiabicyclo[2.2.1]hept-5-ene unit can be prepared with total stereochemical control in very few steps.

Experimental

General
Melting points were determined on a Mitamurariken MELT THERMO and are uncorrected. IR spectra were recorded on a JASCO-102 spectrometer. NMR spectra were recorded at 270 MHz (proton) and at 67.8 MHz (carbon-13) with a JEOL EX-270 spectrometer. The chemical shifts are relative to TMS (solvent CDCl_{3}, unless noted otherwise). DEPT (Distortionless Enhancement by Polarisation Transfer) was used to help assign the carbon signals, where $(+)$ denotes primary and tertiary, $(-)$ secondary and $\mathrm{C}_{\text {quat }}$ quaternary carbons. Mass spectra were measured with a JMS-01-SG-2 spectrometer (EI, 70 eV). Column chromatography was carried out Wako gel C300. Thiophene S-oxides 4 were prepared by oxidation of the corresponding thiophenes with meta-chloroperoxybenzoic acid ($m-\mathrm{CPBA}$) in the presence of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$, as reported previously. ${ }^{14}$ $9 \mathbf{a}^{1}$ was prepared analogous to $\mathbf{9 b}$ (see below). DMF was dried over CaH_{2} and distilled. PBr_{3} was distilled before use.

3,4-Dibenzoyltricyclo[4.2.10 ${ }^{2,5}$ nnona-3,7-diene (3): A solution of tetracyclo[3.2.0.0 $\left.{ }^{2,7} 0^{4,6}\right]$ heptane $(1,100 \mathrm{mg}, 1.09 \mathrm{mmol})$ and dibenzoylacetylene $(\mathbf{2}, 234 \mathrm{mg}, 1.00 \mathrm{mmol})$ in $\mathrm{CCl}_{4}(2 \mathrm{~mL})$ was held at reflux for 48 h . Thereafter, CCl_{4} was removed in vacuo and the residue was subjected to column chromatography on silica gel (hexane/ether $1: 2$) to give $3(270 \mathrm{mg}, 85 \%)$ as a pale yellow solid, m.p. $104{ }^{\circ} \mathrm{C}$. (Found: $\mathrm{M}^{+}, 326.1309 . \mathrm{C}_{23} \mathrm{H}_{18} \mathrm{O}_{2}$ requires M^{+},

1

2

Scheme 1 Synthesis of dienophile 3,4-dibenzoyl-tricyclo[4.2.102,5]nona-3,7-diene (3).

[^0]

4b: $\mathrm{R}=\mathrm{CH}_{3}, \mathbf{4 c}: \mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph}$

8a: $\mathrm{X}=\mathrm{Cl} ; \mathbf{8 b}: \mathrm{X}=\mathrm{H}$

9a: $\mathrm{R}=\mathrm{CH}_{3}, \mathrm{X}=\mathrm{Cl}(78 \%)$
9b: $\mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{X}=\mathrm{H}(75 \%)$

Scheme 2 Cycloaddition of thiophene S-oxides to alkenes.
326.1307). $v_{\max }\left(\right.$ neat $/ \mathrm{cm}^{-1}$) 2994, 2974, 2948, 1648, 1598, 1449, $1317,1290,1279,947,865,703,660 ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.55$ $\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J=9.6 \mathrm{~Hz}\right), 1.74\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J=9.6 \mathrm{~Hz}\right), 2.89(2 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz})$, $2.91(2 \mathrm{H}, \mathrm{brs}), 6.52(2 \mathrm{H}, \mathrm{s}), 7.22-7.72(10 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}(67.8 \mathrm{MHz}$, CDCl_{3}) 39.4, 40.1, 45.4, 128.5, 128.8, 133.2, 136.0, 136.7, 149.9, 190.8; MS (EI, 70 eV$) m / z(\%)=326\left(\mathrm{M}^{+}\right)(30)$.

Dibutyl 2,3-dibromo-1,4-dimethyl-7-thiabicyclo[2.2.1]hept-2-ene-5, 6-dicarboxylate 7-oxide (6): A mixture of 3,4-dibromo-2,5-dimethylthiophene S-oxide (4a) $(150 \mathrm{mg}, 0.52 \mathrm{mmol})$ and dibutyl maleate (5) $237 \mathrm{mg}, 1.04 \mathrm{mmol}$) in chloroform (2 mL) was heated under reflux for 24 h . Thereafter, the solution was cooled and concentrated in vacuo. The residue was subjected to column chromatography on silca gel (hexane/ether $2: 1$) to give $6(240 \mathrm{mg}, 89 \%)$ as a colourless solid; m.p. $69-70^{\circ} \mathrm{C}$. (Found: $\mathrm{M}^{+}, 513.9848 . \mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{5}{ }^{79} \mathrm{Br}^{81} \mathrm{BrS}$ requires $\left.\mathrm{M}^{+}, 513.9847\right) . v_{\max }\left(\right.$ neat $\left./ \mathrm{cm}^{-1}\right) 2960,2870,1737,1566,1450,1383$, $1328,1282,1246,1171,1146,1110,1084,1063,1025,950 . \delta_{H}(270$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.93\left(6 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{CH}_{3}\right), 1.36(4 \mathrm{H}, \mathrm{m}), 1.59(4 \mathrm{H}$, $\mathrm{m}), 1.68\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{CH}_{3}\right), 3.89(2 \mathrm{H}, \mathrm{s}), 4.04(4 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}(67.8 \mathrm{MHz}$, CDCl_{3}, DEPT 90, DEPT 135) $13.7\left(+, 2 \mathrm{C}, \mathrm{CH}_{3}\right), 15.5\left(+, 2 \mathrm{C}, \mathrm{CH}_{3}\right)$, $19.1(-, 2 \mathrm{C}), 30.4(-, 2 \mathrm{C}), 52.7(+, 2 \mathrm{C}, \mathrm{CH}), 65.6(-, 2 \mathrm{C}), 75.2\left(\mathrm{C}_{\text {quat }}\right.$, 2C), $125.4\left(\mathrm{C}_{\text {quat, }}, 2 \mathrm{C}\right), 169.1\left(\mathrm{C}_{\text {quat }}, 2 \mathrm{C}\right)$. MS $(70 \mathrm{eV}) \mathrm{m} / \mathrm{z}(\%)=516$ $\left.\left(\left[{ }^{81} \mathrm{Br}_{2}\right] \mathrm{M}^{+}, 4\right), 514\left(\left[{ }^{81} \mathrm{Br}^{79} \mathrm{Br}\right] \mathrm{M}^{+}, 8\right), 512\left({ }^{79} \mathrm{Br}_{2}\right] \mathrm{M}^{+}, 4\right), 468\left(\left[{ }^{81} \mathrm{Br}_{2}\right]\right.$ $\left.\mathrm{M}^{+}-\mathrm{SO}, 38\right), 264$ (100).

5,6-Dibenzoyl-11,12-dibromo-1,10-dimethyl-14-thiapentacyclo[8.2.1.1. ${ }^{3,8} 0 . .^{2,9} 0 . .^{4,7}$]penta-deca-5,11-diene 14-oxide (7): A solution of $3(100 \mathrm{mg}, 0.31 \mathrm{mmol})$ and $4 \mathrm{a}(44 \mathrm{mg}, 0.15 \mathrm{mmol})$ in chloroform $(1.5 \mathrm{~mL})$ was held at reflux for 21 h . Then, the cooled solution was concentrated in vacuo and subjected to column chromatography on silica gel (ether/hexane $1: 1$) to give $7(75 \mathrm{mg}, 82 \%)$ as a colourless solid; m.p. $184^{\circ} \mathrm{C}$. (Found: $\mathrm{MH}^{+}, 612.9870 . \mathrm{C}_{29} \mathrm{H}_{25} \mathrm{O}_{3}{ }^{79} \mathrm{Br}^{81} \mathrm{BrS}$ requires $\left.\mathrm{MH}^{+}, 612.9873[\mathrm{FAB}]\right) . v_{\max }\left(\mathrm{KBr} / \mathrm{cm}^{-1}\right) 3054,3026,2960$, $2920,1653,1597,1444,1315,1286,1110,712,687,656 ; \delta_{\mathrm{H}}(270$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.48(2 \mathrm{H}, \mathrm{m}), 1.65\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{CH}_{3}\right), 2.51(2 \mathrm{H}, \mathrm{bs}), 2.52$ $(2 \mathrm{H}, \mathrm{bs}), 3.07(2 \mathrm{H}, \mathrm{bs}), 7.18-7.24(4 \mathrm{H}, \mathrm{m}), 7.33-7.39(2 \mathrm{H}, \mathrm{m}), 7.60-$ $7.63(4 \mathrm{H}, \mathrm{m}) ;{ }^{13} \delta_{\mathrm{C}}\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, DEPT, DEPT 135) 16.2 (+, $\left.2 \mathrm{C}, \mathrm{CH}_{3}\right), 27.8(-, 2 \mathrm{C}), 35.0(+, 2 \mathrm{C}, \mathrm{CH}), 42.3(+, 2 \mathrm{C}, \mathrm{CH}), 53.3(+$, $2 \mathrm{C}, \mathrm{CH}), 77.2\left(\mathrm{C}_{\text {quat }}, 2 \mathrm{C}\right), 125.8\left(\mathrm{C}_{\text {quat }}, 2 \mathrm{C}\right), 128.5(+, 4 \mathrm{C}, \mathrm{CH}), 128.8$ $(+, 4 \mathrm{C}, \mathrm{CH}), 133.4(+, 2 \mathrm{C}, \mathrm{CH}), 136.4\left(\mathrm{C}_{\text {quat }}, 2 \mathrm{C}\right), 145.9\left(\mathrm{C}_{\text {quat }}, 2 \mathrm{C}\right)$, $190.5\left(\mathrm{C}_{\text {quat }}, 2 \mathrm{C}, \mathrm{C}=\mathrm{O}\right)$; MS (FAB, 3-nitrobenzyl alcohol) $\mathrm{m} / \mathrm{z}(\%)=$ $613\left(\mathrm{MH}^{+}, 35\right), 564$ (15).

N-Phenyl-5,6-benzyl-1,4-dimethyl-7-thiabicyclo[2.2.1]hept-5-ene-2,3-carboxamide 7-oxide (9b): A solution of 3,4-dibenzyl-2,5-dimethylthiophene S-oxide ($4 \mathbf{c}, 406 \mathrm{mg}, 1.32 \mathrm{mmol}$) and N-phenylmaleimide ($\mathbf{8 b}, 250 \mathrm{mg}, 1.45 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(4 \mathrm{~mL})$ was stirred at $60^{\circ} \mathrm{C}$ for 18 h under an inert atmosphere. Thereafter, the solvent was evaporated in vacuo and the residue was subjected to a short column chromatography on silica gel (ether $/ \mathrm{CHCl}_{3} /$ hexane $2: 1: 1)$ to give $9 \mathbf{b}(475 \mathrm{mg}, 75 \%)$ as a colourless solid, m.p. $73^{\circ} \mathrm{C}$. (Found: M^{+}, 481.1718. $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{~S}$ requires M^{+}, 481.1712). $v_{\text {max }}$ $\left(\mathrm{KBr} / \mathrm{cm}^{-1}\right) 1700,1060 ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.67\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{CH}_{3}\right)$, $3.56\left(2 \mathrm{H}, \mathrm{d},{ }^{2} J=16.0 \mathrm{~Hz}\right), 3.76(2 \mathrm{H}, \mathrm{s}), 3.82\left(2 \mathrm{H}, \mathrm{d},{ }^{2} J=16.0 \mathrm{~Hz}\right)$, $7.04-7.52(15 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 13.5,32.7,51.2,73.9$, 126.1, 126.8, 128.4, 128.7, 128.8, 129.0, 129.1, 131.6, 137.0, 137.1, 174.1; MS (EI, 70 eV$) m / z(\%)=433\left(\mathrm{M}^{+}-\mathrm{SO}, 47\right), 342(6.9), 193$ (100). Anal Calcd for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{~S}$ (481.60): C, 74.82; H, 5.65; N, 2.91. Found: C, 74.82 ; H, 5.84 ; N, 2.83\%.

Dibutyl 2,3-dibromo-1,4-dimethyl-7-thiabicyclo[2.2.1]hept-2-ene5,6 -dicarboxylate (10): A solution of $7(114 \mathrm{mg}, 0.22 \mathrm{mmol})$ and PBr_{3} $(110 \mu \mathrm{~L}, 313 \mathrm{mg}, 1.16 \mathrm{mmol})$ in dry DMF $(2.0 \mathrm{~mL})$ was set at $0^{\circ} \mathrm{C}$ and stirred at r.t. for 25 min . Thereafter, the mixture was cooled again to $0^{\circ} \mathrm{C}$ and ether $(10 \mathrm{~mL})$ was added. Then, water $(300 \mu \mathrm{~L})$ was added dropwise. The mixture was extracted with water $(15 \mathrm{~mL})$ and ether $(2 \times 15 \mathrm{~mL})$. The combined organic phase was dried over anhydrous MgSO_{4} and concentrated in vacuo. Column chromatography on silica gel (hexane/ether $2.5: 1$) gave $10(71 \mathrm{mg}, 65 \%)$ as a colourless oil. (Found: $\mathrm{M}^{+}, 497.9896 . \mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{4}{ }^{79} \mathrm{Br}^{81} \mathrm{BrS}$ requires $\mathrm{M}^{+}, 497.9899$). $V_{\max }\left(\right.$ neat $\left./ \mathrm{cm}^{-1}\right) 2956,2854,1748,1587,1459,1382,1195 ; \delta_{\mathrm{H}}$ $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.92\left(6 \mathrm{H}, \mathrm{t},{ }^{3} J=7.5 \mathrm{~Hz}, 2 \mathrm{CH}_{3}\right), 1.20-1.34(4 \mathrm{H}$, $\mathrm{m}), 1.56(4 \mathrm{H}, \mathrm{m}), 1.78\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{CH}_{3}\right), 3.94(2 \mathrm{H}, \mathrm{s}), 3.92-4.10(4 \mathrm{H}$, $\mathrm{m}) ; \delta_{\mathrm{C}}\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 13.7\left(+, 2 \mathrm{C}, \mathrm{CH}_{3}\right), 19.2\left(+, 2 \mathrm{C}, \mathrm{CH}_{3}\right.$ and $\left.2 \mathrm{C}, \mathrm{CH}_{2}\right), 30.5(-, 2 \mathrm{C}), 60.7(+, 2 \mathrm{C}, \mathrm{CH}), 65.1(-, 2 \mathrm{C}), 65.9\left(\mathrm{C}_{\text {quat }}\right.$, $2 \mathrm{C}), 132.3\left(\mathrm{C}_{\text {quat }}, 2 \mathrm{C}\right), 169.3\left(\mathrm{C}_{\text {quat, }}, 2 \mathrm{C}, \mathrm{C}=\mathrm{O}\right) ; \mathrm{MS}(70 \mathrm{eV}) \mathrm{m} / \mathrm{z}(\%)=$ $\left.500\left(\left[{ }^{81} \mathrm{Br}_{2}\right] \mathrm{M}^{+}, 10\right), 498\left({ }^{79} \mathrm{Br}^{81} \mathrm{Br}^{2} \mathrm{M}^{+}, 19\right), 496\left({ }^{79} \mathrm{Br}_{2}\right] \mathrm{M}^{+}, 10\right), 419$ $\left(\mathrm{M}^{+}-\mathrm{Br}, 31\right), 417\left(\mathrm{M}^{+}-\mathrm{Br}, 30\right), 308$ (94), 271 (52), 269 (100), 267 (50).

5,6-Dibenzoyl-11,12-dibromo-1,10-dimethyl-14-thiapentacyclo[8.2.1.1. ${ }^{3,8} 0 .{ }^{2,9} 0 .^{4,7}$]penta-deca-5,11-diene (11): A solution of 7 $(67 \mathrm{mg}, 0.11 \mathrm{mmol})$ and $\mathrm{PBr}_{3}(110 \mu \mathrm{~L}, 313 \mathrm{mg}, 1.16 \mathrm{mmol})$ in dry DMF (1.5 mL) was set at $0^{\circ} \mathrm{C}$ and stirred at r.t. for 25 min . Thereafter, the mixture was cooled again to $0^{\circ} \mathrm{C}$ and ether $(10 \mathrm{~mL})$ was added. Then, water $(300 \mu \mathrm{~L})$ was added dropwise. The mixture was extracted with water $(15 \mathrm{~mL})$ and ether $(2 \times 15 \mathrm{~mL})$. The combined

6

9a $\mathrm{R}^{1}=\mathrm{CH}_{3}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{X}=\mathrm{Cl}$
9b: $\mathrm{R}^{1}=\mathrm{CH}_{3}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{X}=\mathrm{H}$

12a: $\mathrm{R}^{1}=\mathrm{CH}_{3}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{X}=\mathrm{Cl}(67 \%)$
12b: $\mathrm{R}^{1}=\mathrm{CH}_{3}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{X}=\mathrm{H}(68 \%)$

Scheme 3 Deoxygenation of compounds with a 7-thiabicyclo[2.2.1]heptene S-oxide subunit.
organic phase was dried over anhydrous MgSO_{4} and concentrated in vacuo. The residue was subjected to column chromatography on silica gel (hexane/ether $3: 1$) to give $\mathbf{1 1}(19 \mathrm{mg}, 30 \%)$ as a colourless solid, m.p. $176-179^{\circ} \mathrm{C}$. (Found: MH^{+}, 596.9922 . $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{O}_{2}{ }^{79} \mathrm{Br}^{81} \mathrm{BrS}$ requires $\mathrm{MH}^{+}, 596.9923$ [FAB]). $v_{\text {max }}\left(\mathrm{KBr} / \mathrm{cm}^{-1}\right) 3058,2960,2922$, $2856,1651,1598,1446,1314,1284,1262,866,741,713,689 ; \delta_{\mathrm{H}}(270$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.56(2 \mathrm{H}, \mathrm{bs}), 1.72\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{CH}_{3}\right), 2.38(2 \mathrm{H}, \mathrm{s}), 2.62$ $(2 \mathrm{H}, \mathrm{s}), 2.99(2 \mathrm{H}, \mathrm{s}), 7.17-7.23(4 \mathrm{H}, \mathrm{m}), 7.32-7.38(2 \mathrm{H}, \mathrm{m}), 7.60-$ $7.63(4 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, DEPT 90, DEPT 135) $20.5(+$, $\left.2 \mathrm{C}, \mathrm{CH}_{3}\right), 35.4(+, 2 \mathrm{C}, \mathrm{CH}), 50.0(+, 2 \mathrm{C}, \mathrm{CH}), 62.3(+, 2 \mathrm{C}, \mathrm{CH}), 68.2$ $(+, 2 \mathrm{C}, \mathrm{CH}), 128.9(+, 4 \mathrm{C}, \mathrm{CH}), 129.3(+, 4 \mathrm{C}, \mathrm{CH}), 132.5\left(\mathrm{C}_{\text {quat }}, 2 \mathrm{C}\right)$, 133.8 (+, 2C, CH), 137.0 (C quat, 2C), 146.4 (C quat, 2C), 191.1 (C Cuat, 2C, CO); MS (FAB, 3-nitrobenzyl alcohol) $m / z(\%)=599\left(\left[{ }^{81} \mathrm{Br}_{2}\right]\right.$ $\left.\left.\left.\mathrm{MH}^{+}, 0.9\right), 597\left({ }^{79} \mathrm{Br}^{81} \mathrm{Br}^{2}\right] \mathrm{MH}^{+}, 1.5\right), 595\left({ }^{99} \mathrm{Br}_{2}\right] \mathrm{MH}^{+}, 0.85\right)$.

N-(p-Chlorophenyl)-1,4-dimethyl-7-thiabicyclo[2.2.1]hept-5-ene-2,3-dicarboxamide (12a): $\operatorname{PBr}_{3}(300 \mu \mathrm{~L}, 855 \mathrm{mg}, 3.16 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ and within 25 min was added to a solution of $\mathbf{9 a}(100 \mathrm{mg}, 0.30 \mathrm{mmol})$ in dry DMF $(2.5 \mathrm{~mL})$. The resulting slurry was stirred at r.t. for 25 min , then cooled to $0^{\circ} \mathrm{C}$ and ether (15 mL) was added. Then, water ($300 \mu \mathrm{~L}$) was added dropwise. Thereafter, the mixture was extracted with water $(15 \mathrm{~mL})$ and ether $(2 \times 15 \mathrm{~mL})$. The combined organic phase was dried over anhydrous MgSO_{4} and concentrated in vacuo. The residue was subjected to column chromatography on silica gel (hexane/ether 2:1) to give $\mathbf{1 2 a}(64 \mathrm{mg}, 67 \%)$ as colourless needles, m.p. $153-154^{\circ} \mathrm{C}$. (Found: $\mathrm{M}^{+}, 320.0518 . \mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{~N}^{35} \mathrm{CIS}$ requires M^{+}, 320.0512). $v_{\text {max }}\left(\mathrm{KBr} / \mathrm{cm}^{-1}\right) 3098$, 2966, 2928, 2870, 1703, $1492,1453,1378,1181,1167,1087,836,804,741 ; \delta_{\mathrm{H}}(270 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 1.95\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{CH}_{3}\right), 3.83(2 \mathrm{H}, \mathrm{s}), 6.31(2 \mathrm{H}, \mathrm{s}), 7.09(2 \mathrm{H}, \mathrm{d}$, $\left.{ }^{3} J=8.6 \mathrm{~Hz}\right), 7.40\left(2 \mathrm{H}, \mathrm{d},{ }^{3} J=8.6 \mathrm{~Hz}\right) ; \delta_{\mathrm{C}}\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, DEPT 90, DEPT 135) $18.3\left(+, 2 \mathrm{C}, \mathrm{CH}_{3}\right), 57.8(+, 2 \mathrm{C}, \mathrm{CH}), 64.6\left(\mathrm{C}_{\text {quat }}, 2 \mathrm{C}\right)$, 127.6 (+, 2C, CH), 129.3 (+, 2C, CH), 129.9 ($\mathrm{C}_{\text {quat }}$), 134.5 ($\left.\mathrm{C}_{\text {quat }}\right)$, $141.2(+, 2 \mathrm{C}, \mathrm{CH}), 173.4(\mathrm{C}$ quat $, 2 \mathrm{C}, \mathrm{C}=\mathrm{O})$; MS $(70 \mathrm{eV}) \mathrm{m} / \mathrm{z}(\%)=321$ ($\left[{ }^{37} \mathrm{Cl}\right] \mathrm{M}^{+}, 3$), $319\left(\left[{ }^{35} \mathrm{Cl}\right] \mathrm{M}^{+}, 8\right), 207$ (13), 112 (100). Anal Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NO}_{2} \mathrm{ClS}$ (319.81): C, 60.09 ; H, 4.41 ; N, 4.38. Found: C, 60.17; H, 4.45; N, 4.43\%.

N-Phenyl-5,6-benzyl-1,4-dimethyl-7-thiabicyclo[2.2.1]hept-5-ene-2,3-carboxamide (12b): A solution of $9 \mathbf{~ b}(50 \mathrm{mg}, 0.10 \mathrm{mmol})$ and $\operatorname{PBr}_{3}(150 \mu \mathrm{~L}, 427 \mathrm{mg}, 1.58 \mathrm{mmol})$ in dry DMF $(2.0 \mathrm{~mL})$ was reacted (addition time 20 min . at $0^{\circ} \mathrm{C}$, reaction time 20 min . at r.t.) and worked-up analogous to the preparation of 12a. Column chromatography on silica gel (hexane/ether $3: 1$) gave 12b (33 mg , 68%) as colourless needles, m.p. $152-153^{\circ} \mathrm{C}$ (hexane). (Found: M^{+}, 465.1766; $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{NS}$ requires M^{+}, 465.1763). $v_{\text {max }}\left(\mathrm{KBr} / \mathrm{cm}^{-1}\right)$

3060, 3024, 2980, 2930, 2870, 1775, 1706, 1600, 1494, 1453, 1382, $1184,1029,750,728,714,692 ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.77(6 \mathrm{H}, \mathrm{s}$, $\left.2 \mathrm{CH}_{3}\right), 3.30\left(2 \mathrm{H}, \mathrm{d},{ }^{2} J=15.9 \mathrm{~Hz}\right), 3.76\left(2 \mathrm{H}, \mathrm{d},{ }^{2} J=15.9 \mathrm{~Hz}\right), 3.85$ $(2 \mathrm{H}, \mathrm{s}), 7.15-7.32(12 \mathrm{H}, \mathrm{m}), 7.42-7.53(3 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}(67.8 \mathrm{MHz}$, CDCl_{3}, DEPT 90, DEPT 135) $18.0\left(+, 2 \mathrm{C}, \mathrm{CH}_{3}\right), 33.2\left(-, 2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, $59.0(+, 2 \mathrm{C}, \mathrm{CH}), 66.5\left(\mathrm{C}_{\text {quat, }}, 2 \mathrm{C}\right), 126.2(4 \mathrm{C},+, \mathrm{CH}), 126.4(2 \mathrm{C},+$, $\mathrm{CH}), 128.4(4 \mathrm{C},+, \mathrm{CH}), 128.6(2 \mathrm{C},+, \mathrm{CH}), 128.8(2 \mathrm{C},+, \mathrm{CH}), 129.3$ $(+, \mathrm{CH}), 131.5\left(2 \mathrm{C}, \mathrm{C}_{\text {quat }}\right), 138.6\left(2 \mathrm{C}, \mathrm{C}_{\text {quat }}\right), 144.8\left(\mathrm{C}_{\text {quat }}\right), 173.6(2 \mathrm{C}$, $\mathrm{C}_{\text {quat }}$, $\left.\mathrm{C}=\mathrm{O}\right)$; $\mathrm{MS}(70 \mathrm{eV}) m / z(\%)=465\left(\mathrm{M}^{+}, 3\right), 433\left(\mathrm{M}^{+}-\mathrm{S}, 38\right), 292$ (100), 173 (44). Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{~S}$ (465.61): C, 77.39; H, 5.85 ; N, 3.01. Found: C, 77.21; H, 5.86; N, 2.99\%.

Received 29 September 2009; accepted 19 October 2009

Paper 09/0803 doi: 10.3184/030823409X12562932030738
Published online: 16 November 2009

References

1 Y.Q. Li, M. Matsuda, T. Thiemann, T. Sawada, S. Mataka and M. Tashiro, M., Synlett, 1996, 461.

2 P. Pouzet, I. Erdelmeier, P. Ginderow, J.P. Mornon, P.M. Dansette and D. Mansuy, J. Chem. Soc., Chem. Commun., 1995, 473.

3 Y.Q. Li, T. Thiemann, T. Sawada, S. Mataka and M. Tashiro, J. Org. Chem., 1997, 62, 7926.
4 T. Thiemann, M.L. Sáe Melo, A.S. Campos Neves, Y.Q. Li, S. Mataka, M. Tashiro, U. Geissler and D.J. Walton, J. Chem. Res., 1998 (S), 346.

5 C. Thiemann, T. Thiemann, Y.Q. Li, T. Sawada, Y. Nagano and M. Tashiro, Bull. Chem. Soc. Jpn., 1994, 67, 1886.

6 T. Thiemann and K. Gopal Dongol, J. Chem. Res. (S), 2002, 303; (M) 2002, 701.

7 Y.Q. Li, T. Thiemann, T. Sawada and M. Tashiro, J. Chem. Soc., Perkin Trans. I, 1994, 2323.
8 Y.Q. Li, T. Thiemann, K. Mimura, T. Sawada, S. Mataka and M. Tashiro, Eur. J. Org. Chem., 1998, 1841.
9 K. Gopal Dongol, S. Mataka and T. Thiemann, J. Chem. Res., 2003, (S) 527; 2003, (M) 901.
10 C.D. Smith, J. Am. Chem. Soc., 1966, 88, 4273.
11 T. Thiemann, Y.Q. Li, C. Thiemann, T. Sawada, D. Ohira, M. Tashiro and S. Mataka, Heterocycles, 2000, 52, 1215.

12 N. Furukawa, S. Zhang, E. Horn, O. Takahashi, S. Sato, M. Yokoyama and K. Yamaguchi, Heterocycles, 1998, 47, 793.
13 N. Naperstkow, J.B. Macaulay, M.J. Newlands and A.G. Fallis, Tetrahedron Lett., 1989, 30, 5077.
14 T. Thiemann, D. Ohira, K. Arima, T. Sawada, S. Mataka, F. Marken, R.G. Compton, S.D. Bull and S.G. Davies, J. Phys. Org. Chem., 2000, 13, 648.

[^0]: * Correspondent. E-mail: thies@uaeu.ac.ae

